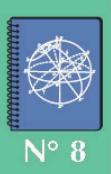
DIAGRAMME SOLAIRE

Louis CAMPION


Ce livret "Diagramme Solaire" rédigé par Louis Campion, capitaine au long cours, explore divers aspects liés aux mouvements de la Terre et du Soleil, ainsi que la mesure du temps solaire à partir des concepts de Temps solaire vrai local (Tvg) et de Temps solaire moyen local (Tmg), et des variations dues à l'orbite elliptique de la Terre et à l'inclinaison de son axe. L'équation du temps (ET) est introduit ainsi que les corrections nécessaires pour obtenir le temps universel (TU) et le temps légal (TL). La trajectoire apparente du Soleil est discutée via le calcul sa hauteur (H) et son azimut (Z) à un instant et un lieu donnés.

Une section est dédiée à la construction et à l'utilisation des diagrammes solaires pour visualiser la course du Soleil dans le ciel à différentes dates. Ces diagrammes sont utiles pour évaluer l'énergie solaire reçue en fonction de la saison et de la latitude du lieu.

Enfin, des tableaux de valeurs quotidiennes pour la déclinaison solaire, l'équation du temps, l'éclairement extraterrestre, la durée moyenne du jour, et l'irradiation extraterrestre reçue sur une surface horizontale sont fournis.

Société Scientifique d'Éducation Populaire agréée Jeunesse et Sports 35, boulevard Louis Millet - 44300 NANTES - Tél. 02 40 68 91 20 - Fax 02 40 93 81 23 Internet : www.san-fr.com - E-mail : san@san-fr.com

DIAGRAMME SOLAIRE

Louis CAMPION

Les Cahiers de la SAN

La Société d'Astronomie de Nantes

Résolument tournée vers le grand public, la SAN vous propose de découvrir l'astronomie ou d'approfondir vos connaissances dans ce domaine de multiples façons :

- Assister aux exposés d'astronomie présentés lors des réunions du vendredi soir, ouvertes à tous les adhérents, au local de la Société à partir de 20h30.
- Consulter ou emprunter l'un des mille ouvrages que possède le fonds bibliothécaire.
- Participer aux observations de découverte ou de perfectionnement. Vous pouvez également emprunter un instrument.
- Assister aux conférences au cours desquelles des astronomes et astrophysiciens de renom viennent présenter les derniers acquis de leurs travaux.
- Solliciter la SAN pour animer des actions pédagogiques préparées à l'attention de public scolaire ou adulte.
- Visiter les expositions auxquelles la SAN participe régulièrement.
- Apporter votre contribution à la réalisation de travaux pratiques d'astronomie tels que la mesure de la masse de Jupiter ou l'évaluation des altitudes des reliefs lunaires.
- Réfléchir et débattre des grands thèmes de la physique, de l'astrophysique et de la science en général au sein d'un groupe de réflexion théorique.
- Enfin, l'astronomie nécessitant des connaissances et des compétences multiples (en optique, mécanique, électronique, etc.), offrir un peu de votre temps pour la conception ou à la réalisation de projets astronomiques.

Pour participer à ces activités, il vous suffit de devenir adhérent.

La Société d'Astronomie de Nantes est une association fondée en 1971 et régie par la loi de 1901.

DIAGRAMME SOLAIRE

Louis CAMPION

Capitaine au long cours

Notes personnelles

Les « *Cabiers de la SAN* » sont édités par la Société d'Astronomie de Nantes, Société Scientifique d'Éducation Populaire agréée Jeunesse et Sports. 35, boulevard Louis-Millet 44300 NANTES

Tél. 02 40 68 91 20 - Fax 02 40 93 81 23 - E-mail: san@san-fr.com

© Toute reproduction intégrale ou partielle faite par quelque procédé que ce soit, sans l'autorisation de la Société d'Astronomie de Nantes, est interdite.

Table des Matières

Généralités
Temps et Heures
Le Temps Solaire Moyen Local (Tmg)
Temps Moyen du premier méridien (Tmp) ou temps universel (TU)
Trajectoire apparente du Soleil
Construction d'un diagramme solaire
Valeurs quotidiennes de la déclinaison solaire 27
Valeurs quotidiennes de l'équation du temps 28
Valeurs quotidiennes de l'éclairement extraterrestre 29
Durée moyenne du jour
Moyenne quotidienne de l'irradiation extraterrestre recue sur une surface horizontale 31

Moyenne quotidienne de l'irradiation extraterrestre reçue sur une surface horizontale

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
Latitude												
Nord												
51,5	830	1377	2207	3117	3830	4157	3995	3398	2554	1669	983	684
51,0	860	1407	2234	3135	3839	4160	4001	3412	2577	1698	1014	713
50,5	890	1437	2261	3153	3847	4163	4006	3426	2600	1727	1044	742
50,0	920	1468	2287	3171	3855	4165	4011	3440	2624	1756	1074	772
49,5	950	1498	2313	3188	3863	4168	4016	3453	2646	1785	1104	801
49,0	980	1528	2339	3206	3871	4170	4021	3466	2669	1814	1135	831
48,5	1011	1558	2365	3223	3879	4172	4025	3479	2692	1842	1165	861
48,0	1041	1588	2391	3240	3886	4174	4030	3492	2714	1871	1195	891
47,5	1072	1618	2417	3257	3893	4176	4034	3505	2736	1899	1226	921
47,0	1102	1648	2442	3274	3900	4178	4038	3518	2758	1928	1256	951
46,5	1133	1678	2467	3290	3907	4180	4042	3530	2779	1956	1286	981
46,0	1163	1708	2492	3306	3914	4181	4046	3542	2801	1984	1317	1012
45,5	1194	1738	2517	3322	3920	4182	4049	3554	2822	2012	1347	1042
45,0	1225	1768	2542	3338	3927	4183	4053	3566	2843	2040	1378	1073
44,5	1256	1797	2566	3353	3933	4184	4056	3577	2864	2067	1408	1103
44,0	1287	1827	2590	3368	3939	4185	4059	3588	2885	2095	1439	1134
43,5	1317	1856	2614	3383	3944	4186	4062	3599	2905	2122	1469	1165
43,0	1348	1885	2638	3398	3950	4186	4064	3610	2925	2150	1499	1196
42,5	1379	1914	2662	3413	3955	4186	4067	3620	2945	2177	1530	1227
42,0	1410	1944	2685	3427	3960	4186	4069	3631	2965	2204	1560	1257
41,5	1441	1973	2709	3441	3965	4186	4071	3641	2985	2231	1590	1288
41,0	1472	2001	2732	3455	3969	4186	4073	3650	3004	2257	1620	1319

Unité : J/cm^2

Constante solaire : 1370 W / m^2

6 31

Durée moyenne du jour

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc
Latitude												
Nord												
51,5	81	97	116	136	153	163	158	143	124	104	86	76
51,0	82	97	116	136	153	162	158	143	124	105	87	77
50,5	83	98	116	135	152	161	157	143	124	105	88	78
50,0	84	98	116	135	151	160	156	142	124	105	88	79
49,5	84	99	116	135	151	159	156	142	124	106	89	80
49,0	85	99	116	135	150	159	155	141	124	106	89	80
48,5	86	99	116	134	150	158	154	141	124	106	90	81
48,0	86	100	117	134,	149	157	154	141	124	106	90	82
47,5	87	100	117	134	149	156	153	t40	124	107	91	83
47,0	87	100	117	134	148	156	152	140	124	107	92	83
46,5	88	101	117	133	148	155	152	139	124	107	92	84
46,0	89	101	117	133	147	154	151	139	123	107	93	85
45,5	89	101	117	133	147	154	151	139	123	107	93	85
45,0	90	102	117	133	146	153	150	138	123	108	94	86
44,5	90	102	117	132	146	152	149	138	123	108	94	87
44,0	91	102	117	132	145	152	149	138	123	108	94	87
43,5	91	103	117	132	145	151	148	137	123	108	95	88
43,0	92	103	117	132	144	151	148	137	123	108	95	88
42,5	92	103	117	131	144	150	147	137	123	109	96	89
42,0	93	103	117	131	143	150	147	136	123	109	96	90
41,5	93	104	117	131	143	149	146	136	123	109	97	90
41,0	94	104	11 <i>7</i>	131	142	148	146	136	123	109	97	91

Unité: dixième d'heure

DIAGRAMME SOLAIRE

Généralités

Les mouvements de la Terre

Le centre de gravité de la Terre tourne autour du Soleil en décrivant une ellipse (dont l'un des foyers est le Soleil) située dans un plan appelé plan de l'écliptique.

Ce mouvement satisfait aux lois de la mécanique céleste et, en particulier, à la loi des aires.

L'excentricité de l'ellipse, bien que faible (e = 0,0167), a pour principales conséquences :

- de faibles variations de la vitesse angulaire autour du Soleil, ayant pour conséquence une dérive du temps vrai sur le temps moyen (voir plus loin).
- une légère variation (± 1,7 %) de la distance Terre/Soleil autour de la valeur moyenne (environ cent cinquante millions de kilomètres). Cette distance est minimale au début de janvier (passage au périhélie) et maximale au début de juillet (passage à l'aphélie). Cette variation de distance n'a d'incidence que sur le flux d'énergie intercepté par la Terre.

Nous ne considérerons pas ici les variations séculaires qui

affectent le mouvement de la Terre (précession, nutation). Donc, nous considérerons que l'axe de la Terre conserve une direction fixe dans l'espace, voisine de celle de l'étoile polaire. Le plan équatorial de la Terre (grand cercle perpendiculaire à l'axe de rotation) fait un angle presque constant avec le plan de l'écliptique (23°27'). La conséquence de cette inclinaison de la Terre sur sa trajectoire est un balancement annuel du Soleil de part et d'autre de l'équateur qui se traduit d'une façon concrète par l'alternance des saisons. L'angle orienté (variable) entre le vecteur Terre/Soleil et le plan de l'équateur terrestre est la déclinaison du Soleil.

La déclinaison varie de – 23°27' (solstice d'hiver) à + 23°27' (solstice d'été). Le signe – caractérisant le Sud et + le Nord.

Calcul approché de la déclinaison D pour un jour donné J

- pour une erreur absolue inférieure à 0,5 degré : $\sin D = 0,398 \times \sin(W \times (J-a))$ avec $a = 81 2 \times \sin(W \times (J-2))$
- formule simplifiée (erreur absolue inférieure à 1 degré) : $\sin D = 0.4 \times \sin (W \times (J 82))$

(voir notations pour valeur de W).

Valeurs quotidiennes de l'éclairement extraterrestre

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
Jours												
1	1416	1410	1394	1371	1349	1332	1326	1330	1346	1368	1391	1409
2	1416	1410	1394	1370	1348	1332	1326	1331	1346	1368	1392	1409
3	1416	1409	1393	1369	1347	1331	1326	1331	1347	1369	1393	1410
4	1416	1409	1392	1369	1347	1331	1326	1331	1348	1370	1393	1410
5	1416	1409	1392	1368	1346	1331	1326	1332	1348	1371	1394	1410
6	1416	1408	1391	1367	1346	1330	1326	1332	1349	1372	1395	1411
7	1416	1408	1390	1366	1345	1330	1326	1332	1350	1372	1395	1411
8	1416	1407	1389	1365	1344	1330	1326	1333	1351	1373	1396	1412
9	1416	1407	1389	1365	1344	1329	1326	1333	1351	1374	1397	1412
10	1416	1406	1388	1364	1343	1329	1326	1334	1352	1375	1397	1412
11	1416	1406	1387	1363	1343	1329	1326	1334	1353	1375	1398	1413
12	1416	1405	1386	1362	1342	1329	1326	1335	1353	1376	1398	1413
13	1416	1404	1386	1362	1341	1328	1326	1335	1354	1377	1399	1413
14	1415	1404	1385	1361	1341	1328	1326	1336	1355	1378	1400	1413
15	1415	1403	1384	1360	1340	1328	1326	1336	1356	1379	1400	1414
16	1415	1403	1383	1359	1340	1328	1326	1337	1356	1379	1401	1414
17	1415	1402	1383	1359	1339	1327	1326	1337	1357	1380	1402	1414
18	1415	1402	1382	1358	1339	1327	1327	1338	1358	1381	1402	1414
19	1414	1401	1381	1357	1338	1327	1327	1338	1359	1382	1403	1415
20	1414	1400	1380	1356	1338	1327	1327	1339	1359	1382	1403	1415
21	1414	1400	1380	1356	1337	1327	1327	1339	1360	1383	1404	1415
22	1414	1399	1379	1355	1337	1326	1327	1340	1361	1384	1404	1415
23	1413	1398	1378	1354	1336	1326	1328	1340	1362	1385	1405	1415
24	1413	1398	1377	1354	1336	1326	1328	1341	1362	1385	1405	1416
25	1413	1397	1376	1353	1335	1326	1328	1342	1363	1386	1406	1416
26	1412	1396	1376	1352	1335	1326	1328	1342	1364	1387	1406	1416
27	1412	1396	1375	1352	1334	1326	1329	1343	1365	1388	1407	1416
28	1412	1395	1374	1351	1334	1326	1329	1343	1365	1388	1407	1416
29	1411		1373	1350	1333	1326	1329	1344	1366	1389	1408	1416
30	1411		1373	1349	1333	1326	1330	1345	1367	1390	1408	1416
31	1411		1372		1333		1330	1345		1390		1416

Unités : W/m^2 (réf. RRM 80). Constante solaire : 1370 W / m².

Valeurs quotidiennes de l'équation du temps

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
Jours												
1	3,22	13,33	12,29	4,03	- 2,52	-2,20	3,40	6,18	0,09	-10,09	-16,22	-11,08
2	3,50	13,41	12,17	3,45	-2,59	-2,11	3,52	6,14	-0,10	-10,29	-16,23	-10,46
3	4,18	13,48	12,05	3,27	-3,06	-2,01	4,03	6,10	-0,29	-10,48	-16,24	-10,22
4	4,45	13,54	11,52	3,09	-3,12	-1,51	4,14	6,05	-0,49	-11,06	-16,24	-9,59
5	5,13	14,00	11,39	2,52	3,18	-1,41	4,25	6,00	-1,09	-11,24	-16,23	-9,34
6	5,39	14,04	11,25	2,35	-3,23	-1,30	4,35	5,54	-1,29	-11,42	-16,21	-9,09
7	6,06	14,08	11,11	2,18	3,27	-1,19	4,45	5,47	- 1,49	12,00	-16,18	-8,44
8	6,32	14,12	10,57	2,01	-3,31	-1,08	4,55	5,40	-2,09	-12,17	-16,15	-8,18
9	6,57	14,14	10,42	1,44	-3,34	-0,56	5,05	5,32	-2,30	-12,34	-16,11	-7,51
10	7,22	14,15	10,27	1,28	-3,37	-0,45	5,13	5,24	-2,50	-12,50	-16,05	-7,24
11	7,46	14,16	10,11	1,12	-3,39	-0,32	5,22	5,15	-3,11	-13,06	-15,59	-6,57
12	8,10	14,16	9,56	0,56	-3,41	-0,20	5,30	5,05	-3,32	-13,21	-15,53	-6,30
13	8,33	14,16	9,40	0,41	-3,42	-0,08	5,38	4,55	-3,53	-13,36	-15,45	-6,02
14	8,55	14,14	9,23	0,25	-3,42	0,05	5,45	4,44	-4,15	-13,50	-15,37	-5,33
15	9,17	14,12	9,07	0,11	-3,42	0,18	5,51	4,33	-4,36	-14,04	-15,27	-5,05
16	9,38	14,09	8,50	-0,04	-3,41	0,30	5,57	4,21	-4,57	-14,18	-15,1 <i>7</i>	-4,36
17	9,59	14,05	8,33	-0,18	-3,40	0,43	6,03	4,09	-5,19	-14,30	-15,06	-4,07
18	10,19	14,01	8,16	-0,32	-3,38	0,56	6,08	3,56	-5,40	-14,42	-14,54	-3,37
19	10,38	13,55	7,58	-0,45	-3,36	1,09	6,12	3,43	-6,02	-14,54	-14,42	-3,08
20	10,56	13,50	7,40	-0,58	-3,33	1,22	6,16	3,29	-6,23	-15,05	-14,28	-2,38
21	11,13	13,43	7,23	-1,11	-3,30	1,35	6,20	3,14	-6,44	-15,15	-14,14	-2,09
22	11,30	13,36	7,05	-1,23	-3,26	1,48	6,22	3,00	-7,06	-15,25	-13,59	-1,39
23	11,46	13,28	6,47	-1,35	-3,22	2,01	6,25	2,44	-7,27	-15,34	-13,43	-1,09
24	12,01	13,20	6,28	-1,46	-3,17	2,14	6,26	2,28	-7,48	-15,42	-13,26	-0,39
25	12,15	13,11	6,10	-1,57	-3,11	2,27	6,27	2,12	-8,09	-15,50	-13,09	-0,09
26	12,29	13,01	5,52	-2,08	-3,05	2,39	6,28	1,56	-8,29	-15,57	-12,51	0,20
27	12,42	12,51	5,34	-2,18	-2,59	2,52	6,28	1,39	-8,50	-16,03	-12,32	0,50
28	12,53	12,40	5,15	-2,27	-2,52	3,04	6,27	1,21	-9,10	-16,08	-12,12	1,20
29	13,05		4,57	-2,36	-2,45	3,16	6,26	1,04	-9,30	-16,13	-11,51	1,49
30	13,15		4,39	-2,44	-2,37	3,28	6,24	0,46	-9,50	-16,17	-11,30	2,18
31	13,24		4,21		-2,29		6,21	0,27		-16,20		2,47

Valeurs en minutes, secondes représentant l'excès du *temps solaire moyen* Tmg sur le temps solaire vrai Tvg, soit Tmg = tvg + ET.

Référence : éphémérides 1975.

Temps et Heures

Le temps solaire vrai local (Tvg)

L'angle horaire (AHv) et l'angle au pôle (P)

Il est directement lié à la rotation de la Terre sur ellemême ; il est défini par l'angle horaire (AHv), c'est-à-dire l'angle formé par le plan méridien passant par le Soleil et le plan méridien du lieu (d'où « local »).

Nous savons qu'il est nul à midi local (puisque le méridien passant par le Soleil est confondu avec le méridien du lieu, c'est la définition même de « *midi* »).

À mesure que l'on avance dans l'après midi, le Soleil se déplace vers l'ouest, de 15° toutes les heures : à 13 h, $AHv = 15^{\circ}$; à 14 h 30 min, $AHv = 37^{\circ}30'$ (2,5 x 15) ; à minuit, $AHv = 180^{\circ}$ et à 11 h le lendemain matin $AHv = 345^{\circ}$.

Mais on utilise plutôt l'angle au pôle pour parler des angles du Soleil, c'est plus tangible et plus simple pour les calculs : P = AHv l'après-midi et $P = 360^{\circ} - AHv$ le matin.

En effet, les phénomènes locaux liés au Soleil, tels que :

- heure du lever et heure du coucher ;
- hauteur le matin et hauteur l'après-midi ;
- azimut du lever et azimut du coucher;
- azimut correspondant à une hauteur du matin et azimut correspondant à une hauteur de l'après-midi, ou inversement;
- hauteur correspondant à un azimut du matin et hauteur correspondant à un azimut de l'après-midi, etc.

sont symétriques par rapport à midi où $AHv = 0^{\circ}$.

Ainsi, par exemple, comme en un lieu donné, à une date donnée, à neuf heures et à quinze heures, la hauteur du Soleil sera la même, l'azimut sera le même, l'un compté du sud vers l'est, et l'autre du sud vers l'ouest bien sûr; comme la durée de l'après-midi sera la même que celle de la matinée (en général)

etc., on comptera l'angle du Soleil symétriquement vers l'est et vers l'ouest à partir de midi. Ainsi, plus haut, à 9 h et à 15 h, où l'angle horaire *AHv* égale respectivement 315° et 45°, nous aurons un angle au pôle :

- $P = 360^{\circ} 315^{\circ} = 45^{\circ}$ le matin (9 h)
- $P = 45^{\circ}$ l'après-midi (15 h).

L'utilisation de l'angle au pôle concrétise le fait que de part et d'autre de midi, à angle égal, les situations sont symétriques ou même égales.

Valeurs quotidiennes de la déclinaison solaire

	Janv.	Fév.	Mars	Avril	Mai	Juin	Juil.	Août	Sept.	Oct.	Nov.	Déc.
Jours												
1	-23,03	-17,20	-7,72	4,41	14,97	22,01	23,13	18,11	8,41	-3,05	-14,32	-21,75
2	-22,95	-16,91	-7,34	4,79	15,27	22,14	23,06	17,85	8,05	-3,44	-14,64	-21,90
3	-22,86	-16,62	-6,95	5,18	15,57	22,27	22,99	17,60	7,68	-3,83	-14,95	-22,05
4	-22,76	-16,33	-6,57	5,56	15,86	22,39	22,91	17,33	7,31	-4,21	-15,27	-22,19
5	-22,65	-16,03	-6,18	5,94	16,15	22,51	22,82	17,07	6,94	-4,60	-15,57	-22,32
6	-22,54	-15,72	-5,80	6,32	16,44	22,62	22,73	16,80	6,57	-4,98	-15,88	-22,45
7	-22,42	-15,41	-5,41	6,70	16,72	22,72	22,62	16,52	6,20	-5,37	-16,18	-22,57
8	-22,29	-15,10	-5,02	7,07	16,99	22,81	22,52	16,24	5,82	-5,75	-16,47	-22,68
9	-22,15	-14,78	-4,63	7,45	17,26	22,90	22,40	15,96	5,45	-6,13	-16,76	-22,78
10	-22,01	-14,46	-4,24	7,82	17,53	22,99	22,28	15,67	5,07	-6,51	-17,05	-22,88
11	-21,86	1/113	-3,85	8,19	17,79	23,06	22,15	15,37	4,69	6.89	-17,33	22.97
12	-21,70		-3,45	8,56	18,05	23,13	22,02	15,08	4,31	,	-17,60	,
13	-21,53	,	-3,06	8,92	18,30	23,19	21,88	14,78	3,93	,	-17,87	,
14	-21,36		-2,67	9,28	18,54	23,25	21,73	14,47	3,55		-18,14	
15	-21,18		-2,27	9,64	18,78	23,29	21,58	14,16	3,16		-18,40	
16	-21,00	,	-1,88	10,00	19,02	23,34	21,42	13,85	2,78		-18,63	
17	-20,81		-1,48	10,35	19,25	23,37	21,26	13,53	2,39		-18,90	
18	· ·	-11,75	-1,09	10,71	19,47	23,40	21,09	13,21	2,01	,	-19,14	,
19	-20,40	,	-0,69	11,05	19,69	23,42	20,91	12,89	1,62	,	-19,38	,
20	-20,19		-0,30	11,40	19,91	23,43	20,73	12,56			-19,61	
		,	-/	,	,		/-	,	-,	,	,	
21	-19,98	-10,68	0,10	11,74	20,11	23,44	20,54	12,23	0,84	-10,57	-19,84	-23,44
22	-19,75	10,32	0,49	12,08	20,32	23,44	20,35	11,90	0,45	-10,93	-20,06	-23,44
23	-19,52	-9,95	0,89	12,42	20,51	23,43	20,15	11,56	0,06	-11,28	-20,27	-23,44
24	-19,29	-9,59	1,28	12,75	20,70	23,42	19,94	11,22	-0,33	-11,63	-20,48	-23,42
25	-19,04	-9,22	1,68	13,08	20,89	23,40	19,73	10,88	-0,72	-11,98	-20,68	-23,41
26	-18,80	-8,84	2,07	13,40	21,07	23,37	19,51	10,54	-1,10	-12,32	-20,87	-23,38
27	-18,54	-8,47	2,46	13,72	21,24	23,34	19,29	10,19	-1,49	-12,66	-21,06	-23,34
28	-18,29	-8,09	2,85	14,04	21,40	23,30	19,07	9,84	-1,88	-13,00	-21,24	-23,30
29	-18,02		3,24	14,36	21,56	23,25	18,83	9,48	-2,27	-13,34	-21,42	-23,25
30	-1 <i>7,7</i> 5		3,63	14,67	21,72	23,19	18,60	9,13	-2,66	-13,67	-21,59	-23,19
31	-17,48		4,02		21,87		18,35	8,77		-13,99		-23,12
	,		,	14,67	,	23,19	,	,	-2,66	,	-21,59	

Valeurs à midi (TU) exprimées en degrés et centièmes.

Référence : éphémérides 1975.

En effet, en valeur absolue, l'angle (*PS,PC*) est égal au complément de l'angle au pôle du Soleil, soit :

 $(PS,PC) = 90^{\circ} - P (P = AHv \text{ l'après-midi et } 360^{\circ} - AHv \text{ le matin}).$

On peut ainsi déduire facilement les centres C et C' (C' symétrique de C par rapport à l'axe Nord-Sud) des cercles correspondants à deux heures solaires équidistantes du midi solaire.

Il suffit, ensuite, de tracer les deux arcs de cercles (limités par la course du Soleil aux solstices), et de les coter, en se rappelant, bien sûr, que le Soleil se lève à l'est et se couche à l'ouest.

Remarque: sur le diagramme, il peut être plus facile de déterminer les points C et C' par la relation:

$$QC = QC' = Rmax / (tg P \times cos L).$$

Le Temps Solaire Moyen Local (*Tmg*)

L'équation du temps (ET)

Le temps vrai est celui indiqué par le Soleil, que l'on lit directement sur un cadran solaire par exemple. Ce temps est affecté d'une erreur variable. Si le Soleil a réglé le déroulement des activités humaines depuis les temps les plus reculés : jour / nuit, travail / repos, il est apparu que vu de la Terre, le Soleil ne tourne pas rond.

Nous avons vu que l'une des conséquences de l'ellipsité de l'orbite terrestre était une variation de la vitesse angulaire de la Terre autour du Soleil. Cette variation de vitesse engendre des perturbations dans la mesure du temps exact par le Soleil.

L'erreur causée s'appelle l'équation du centre (C):

$$C = 2 \times e \sin(W \times t)$$

où *e* = excentricité de l'orbite Terrestre = 0,0167; *W* = vitesse angulaire moyenne de la Terre; *t* = temps (en *J*) écoulé depuis le passage au périhélie.

Une autre erreur affecte la mesure du temps par le Soleil, c'est la *réduction à l'équateur (R)*:

$$R = -tg^2 (i/2) \times sin (2 \times (\pounds + W \times t))$$

où i = obliquité de l'écliptique sur l'équateur ; \pounds = longitude céleste du périgée.

Cette erreur est due au fait que le Soleil se déplace sur l'écliptique et que les heures sont mesurées par des méridiens perpendiculaires à l'équateur. Enfin, que l'on sache que l'on n'a pas pu garder comme compte-temps un astre capricieux qui

parfois avance et parfois recule par rapport aux pendules qui, elles, marchent d'un mouvement régulier et uniforme!

On a été amené à créer un *Soleil moyen*, peu différent du Soleil vrai, mais qui tourne rond, celui-là, et qui diffère du premier d'une valeur égale à la somme des deux erreurs vues plus haut. Cette valeur s'appelle l'équation du temps : ET

$$ET = C + R$$

l'équation du temps est la somme de l'équation du centre et de la réduction à l'équateur.

ET est la correction à ajouter au temps vrai pour obtenir le temps moyen.

$$Tmg = Tvg + ET$$

(ET est toujours inférieur à seize minutes).

Nota: en astronomie, le terme « équation » indique la valeur de la correction à apporter à une position ou une mesure pour la ramener à une valeur exacte. Donc équation = correction.

Calcul approché de l'équation du temps pour un jour donné (J)

 $|ET = 0.128 \times sin(W \times (J - 2)) + 0.164 \times sin(2 \times W \times (J + 10))$

ET est la valeur de l'équation du temps exprimée en heures. Précision : 0,01 heure (0,6 minute).

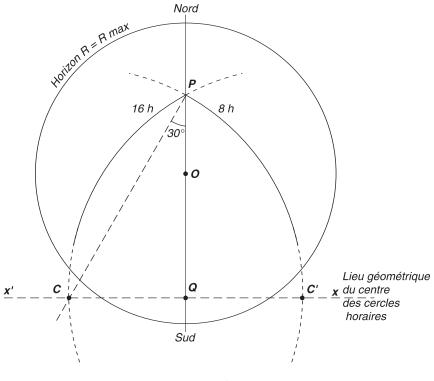


Figure 4

La position du point Q, milieu de PP, se déduit facilement de la relation : $QQ = Rmax \times tg L$

Les points P et Q sont situés de part et d'autre du point central Q.

Le lieu géométrique x'x du centre des cercles est la médiatrice de PP'. La connaissance de la position du point Q sur l'axe Nord-Sud suffit pour le déterminer.

Détermination du centre C des cercles pour une beure solaire Tvg donnée

La position du point C sur la droite x'Qx peut être déterminée par l'angle de la demi-droite PC (P pôle visible) avec l'axe Nord-Sud (figure 4).

On peut déterminer ces points L et C en calculant les angles (OS,OL) et (OS,OC), mais il est également commode de les déterminer à partir du point K (intersection de LC avec la droite Nord-Sud).

En effet, nous avons:

$OK = Rmax \cdot sin D/cos L$

Tracé du cercle

Connaissant les points A12 et L (ou C), il est facile de déterminer :

- le centre O_1 du cercle (intersection de la médiatrice de CA_{12} (ou de LA_{12}) avec la droite Nord / Sud ;
- le rayon du cercle $r = O_1 A_{12}$

Nous avons vu, plus haut, un certain nombre de dates remarquables dont on peut tracer le cercle solaire, mais rien n'empêche d'en choisir des différentes pour convenance personnelle.

Tracé des arcs boraires : beures solaires vraies Tvg

Les lignes des heures sont également des cercles : projection des cercles horaires de la sphère céleste (figure 4).

Lieu géométrique du centre des cercles :

Pour un site donné de latitude L, les cercles horaires passent, quelle que soit l'heure choisie, par deux points fixes P et P', représentant la projection des pôles célestes Nord et Sud.

La hauteur de ces points au-dessus de l'horizon est connue : H = L (pôle visible P) et H = -L (pôle invisible).

Leur position sur l'axe Nord-Sud du diagramme peut être déterminée par les relations : $OP = Rmax \times tg \ a/2$ avec $a = 90^{\circ} - L$ (pour le pôle visible).

Le point P (pôle visible) est sur la demi-droite O-Nord pour les latitudes boréales (donc nous, ici à Nantes).

Temps Moyen du premier méridien (*Tmp*) ou temps universel (*TU*)

Correction de longitude (G)

Jusqu'ici, nous avons considéré du temps local, lié à la longitude du lieu.

Le Temps Universel (TU) est défini comme étant le temps solaire moyen du méridien de longitude 0° (méridien de Greenwich ou premier méridien).

En un lieu de longitude donnée G le temps universel est lié au temps local par la relation :

$$TU = Tmg + G$$

G est traduit en heures : 15° = une heure.

G est positif à l'ouest et négatif à l'est.

Le temps universel est finalement lié au temps vrai local par la relation :

$$TU = Tvg + ET + G$$
 et inversement $Tvg = TU - ET - G$

Le Temps légal (TL)

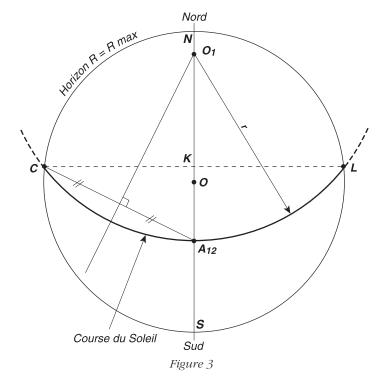
En France, le temps légal est fixé comme suit :

- Eté : TL = TU + 2 heure ;
- Hiver : TL = TU + 1 heure.

Exemple:

Nantes

Longitude $G = 1^{\circ}30'$ ouest = + 6 min.


Le treize novembre : ET = -15 min et 45 s.

Si on lit 14 h et 45 min sur un cadran solaire, il sera en temps légal :

TL = Tvg + ET + G + 1= 14 h 45 min - 0 h 15 min 45 s + 0 h 06 min + 1 h = 15 h 35 min 15 s.

Si on lit sur sa montre 11 h 10 min et 45 s, il sera en temps vrai local :

$$Tvg = TL - ET - G - 1$$

= 11 b 10 min 45 s + 0 b 15 min 45 s - 0 b 6 min - 1 b
= 10 b 20 min 30 s.

Sur le diagramme, la distance OA_{12} vaut :

$$OA_{12} = Rmax \times tg (L - D)/2$$

avec A_{12} sur la demi-droite O-Sud si D < L

 A_{12} sur la demi-droite *O-Nord si D>L* (nous nous bornerons à faire l'étude pour notre région où jamais D>L).

Les points L et C, représentant la position du Soleil à son lever (L) et à son coucher (C).

Sur le diagramme, ces points sont situés sur le plus grand cercle (R = Rmax et hauteur nulle) et sont symétriques par rapport à l'axe Nord-Sud.

Leur azimut, par rapport au Sud, se calcule facilement par : cos(OS,OL) = cos(OS,OC) = -sin(D/cos(L))

Les hauteurs au-dessus de l'horizon, sont repérées par des cercles concentriques centrés en O et de rayon déterminé graphiquement ou calculé à partir de la hauteur H qu'ils représentent, et du rayon du plus grand cercle (R = Rmax).

Pour tracer les cercles de hauteur, on calcule leur rayon respectif par la relation :

 $R = Rmax \times tg \ a/2$ (où $a = 90^{\circ} - H$), c'est une propriété de la projection stéréographique.

Le petit tableau suivant permet de s'affranchir du calcul. Si l'on décide de représenter le diagramme par un cercle de rayon maximum Rmax, on tracera les cercles de hauteurs avec des rayons respectifs de $Rmax \times Y$:

Н	Y
0°	1,0
10°	0,839
20°	0,700
30°	0,577
40°	0,466
50°	0,364
60°	0,268
70°	0,176
80°	0,087
90°	0

Tracé des trajectoires apparentes du Soleil

La trajectoire apparente du Soleil pour un jour donné (déclinaison *D*) est représentée sur le diagramme par un cercle, qu'il est facile de construire à partir de certaines positions caractéristiques. On choisit généralement : (figure 3)

• le point A12, projection de la position du Soleil à midi solaire. Ce point correspond à une hauteur du Soleil H12: $H12 = 90^{\circ}$ - (L - D), c'est la hauteur méridienne du Soleil le jour considéré.

Trajectoire apparente du Soleil

Hauteur (H) et Azimut (Z)

À un instant donné et en un lieu donné, la position du Soleil, dans un repère local, est définie par :

- sa hauteur (*H*): distance angulaire de l'astre à l'horizon. Elle est nulle aux lever et coucher, elle est maximale à midi solaire.
- son azimut (Z) : angle formé par le plan vertical passant par le Soleil et le plan méridien du lieu (Sud).

Calcul de la position du Soleil

À un instant donné, (angle au pôle P), la hauteur et l'azimut du Soleil sont reliés à la latitude (L) et à la déclinaison (D) par les relations suivantes :

$$sin H = sin L \times sin D + cos L \times cos D \times cos P$$
 (1)

$$sin Z = cos D \cdot sin P / cos H$$
 (2)

Lever et Coucher du Soleil

À ces instants H = 0 d'où $sin\ H = 0$ et dans (1) nous avons : $cos\ P = -tg\ L \times tg\ D$, ce qui permet de trouver l'angle au pôle aux moments des lever et coucher, d'où l'heure du lever et du coucher du Soleil.

L'azimut au lever ou coucher s'obtient par la relation :

$$\cos Z = -\sin D/\sin L$$
.

Diagrammes Solaires: description et utilisation

Les diagrammes solaires permettent de représenter graphiquement sur une même figure :

- la course du Soleil dans le ciel (hauteur, azimut, heure solaire) pour certaines dates sélectionnées ;
- le profil des masques solaires éventuels.

Sur ces diagrammes, le lieu d'observation (et sa verticale) est au centre des cercles (de hauteur). Un point de l'espace est représenté par :

- sa hauteur au-dessus de l'horizon, repérée par des cercles concentriques dessinés de 5° en 5° depuis l'horizon (H = 0, cercle extérieur) jusqu'au zénith $(H = 90^{\circ}, \text{ centre des cercles})$;
- son azimut repéré par des rayons (de 10° en 10°) partant du site d'observation (centre des cercles) vers diverses directions (nord, ouest, est, sud...).

La course du Soleil est représentée pour différentes valeurs de déclinaison (D):

• 21 juin (solstice)
• 21 mai et 23 juillet
• 16 avril et 28 août
• 21 mars et 23 septembre (équinoxes) $D = 0^{\circ}$
• 23 février et 19 octobre $D = -10^{\circ}$

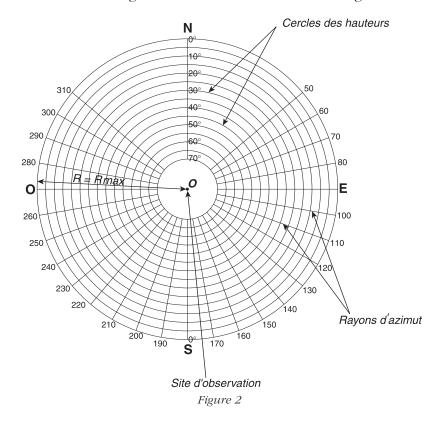
• 20 janvier et 21 novembre $D = -20^{\circ}$

Représentation des masques d'horizon

Un obstacle (bâtiment, montagne...) peut masquer le Soleil à certains moments de la journée. Le profil de cet obstacle est défini par une série de couples hauteur/azimut (H,Z) pouvant être pointés sur le diagramme.

Les trajectoires du Soleil figurant en superposition, on peut ainsi définir durant quelle période de l'année et à quelles heures

Construction d'un diagramme solaire


Principe de la Construction

On utilise les propriétés d'une projection stéréographique de la sphère céleste sur le plan horizontal du lieu (voir figure 2).

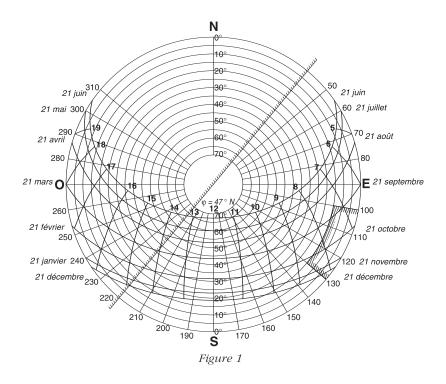
Le site d'observation est représenté par le point central O.

L'horizon est représenté par un cercle de centre O et de rayon Rmax (le plus grand cercle).

Les azimuts sont repérés par des rayons partant de O (site d'observation) et généralement tracés tous les dix degrés.

• troubles atmosphériques (nuages, vapeur d'eau, pollutions, etc.).

On ne peut donc pas faire de calculs rigoureux par les seules formules astronomiques.


Nous donnons, en annexe, des tableaux qui réunissent tous les résultats que les relations précédentes, depuis le début de l'ouvrage, permettent de calculer (par les forts en maths !).

le Soleil est masqué par cet obstacle.

De la même manière, on peut aussi déterminer, par exemple, l'exposition d'une surface verticale aux rayons solaires. (voir figure 1).

Exemple: diagramme solaire de Nantes (sur figure 1):

Course du Soleil le 21 octobre (sans masque solaire)							
Lever	06 h 50 min Tvg	azimut : 107°					
À 10 h 40 min	hauteur = 30°	azimut : 158°					
À midi	hauteur = 32°						
Coucher	17 h 10 min Tvg	azimut : 253°					

Prise en compte d'un masque

On suppose l'existence d'un masque limité par les azimuts 100° et 130° et de hauteur uniforme de 15°.

Le 21 octobre, le Soleil se lèvera derrière le masque, apparaîtra au-dessus du masque à 08 h 25 min dans un azimut de 125°, soit presque à la droite du masque pour l'observateur.

Du début avril à la mi-septembre, cet obstacle ne constitue pas un masque.

Éclairement d'une paroi verticale :

Sur une paroi verticale (un mur) orientée 220°/040°, le 21 octobre :

- Elle est éclairée depuis 06 h 50 min *Tvg*, lever du Soleil (ou bien 08 h 25 min, si l'on prend en compte le masque précédent) et 14 h 30 min *Tvg*.
- Elle sera à l'ombre à partir de 14 h 30 min *Tvg* (ce qui est évident).

Dans tous les calculs précédents, comme le 21 octobre nous sommes à l'heure d'hiver (-1), l'équation du temps est de -15 min, et nous sommes à Nantes où G = 6 min, la correction à apporter aux heures lues sur le diagramme sera :

1 beure - 0 b 15 min + 0 b 6 min = + 1 b 9 min.

En dehors de son aspect documentaire, la construction, l'étude et l'utilisation d'un diagramme solaire ont leur utilité lorsque l'on veut utiliser l'énergie solaire à une fin quelconque.

En effet, la quantité d'énergie reçue par une surface horizontale en une journée, dépend de la latitude du lieu, de la déclinaison du Soleil, de la durée du jour et de la distance de la Terre au Soleil.

Le diagramme nous permet de résoudre facilement le problème lié à l'endroit de l'observation, à la saison et à la longueur du jour. Nous allons voir succinctement comment évaluer l'énergie reçue en fonction de la saison et de la distance Terre/Soleil.

Il est entendu que la durée du jour (*Df*) se déduit sur le diagramme, en opérant la différence entre les heures du coucher et du lever du Soleil un jour donné.

Nous n'allons pas entrer dans le détail des calculs donnant les moyennes quotidiennes de l'énergie reçue sur une surface horizontale à la limite de l'atmosphère (ou *irradiation extraterrestre Go*).

Nous l'obtenons par la formule suivante, pour une journée donnée :

 $Go = 0.36 \times I'o \ (DJ \times sin \ L \times sin \ D + 24/\pi \times sin \ Pc \times cos \ L \times cos \ D)$

où l'o = éclairement extraterrestre en watts / m^2 ;

DJ = durée du jour en heures ;

L = latitude:

D = déclinaison du Soleil;

Pc = angle au pôle du Soleil au coucher;

Go = irradiation extraterrestre en joules / cm².

On obtient *l'o* de la façon suivante :

 $I'o = \overline{I'o} (\overline{R}/R)^2$ = éclairement direct à la limite supérieure de l'atmosphère (incidence normale)

où \overline{Po} = constante solaire pour distance Terre/Soleil = cent cinquante millions de kilomètres, elle vaut 1370 W/m².

 \overline{R} = valeur moyenne distance Terre/Soleil

On calcule d'ailleurs d'une façon approchée le terme $(\overline{R}/R)^2$ où R est la distance Terre/Soleil pour un jour donné par la relation :

$$(\overline{R}/R)^2 = 1 + 2 \times e \times \cos(W(J-2))$$

avec e = excentricité de l'orbite = 0,0167.

W = vitesse angulaire moyenne de la Terre autour du Soleil (voir notations au début).

Bien sûr, toutes ces données théoriques sont affectées d'imprécisions dues à :

• masques locaux qui limitent la durée d'insolation ;